Global Warming

New York City's Special Initiative for Rebuilding and Resilience: Strengths and Limitations of Climate Model-Based Approaches

Radley Horton from Columbia University Earth Institute will speak on climate projections for New York City.  The $20 billion Special Initiative for Rebuilding and Resiliency (SIRR) Plan for New York is grounded upon climate risk information provided by the New York City Panel on Climate Change (NPCC). This expert panel, tasked with advising the City on climate-related issues, completed a ‘rapid response’ climate assessment with updated climate projections.

Advances in Global Climate and Atmospheric Modeling: Perspectives from Yale and Todai

Researchers from Tokyo’s Todai University and Yale climate scientists made up a 5-person forum that included talks on a variety of climate science topics Friday, September 21, at Kroon Hall.  Featured talks included:

Asia: Observations and modeling - Yutaka Kondo (University of Tokyo)

Aerosol effects on ice clouds: Climate forcing and potential for geoengineering

Trude Storelvmo (Yale University)

Robust direct effect of carbon dioxide on tropical circulation and regional precipitation

Global warming simulations suggest that wet regions (where precipitation exceeds evaporation) will become wetter and dry regions drier by the end of the 21st century (e.g., Held and Soden 2006), with larger contrasts expected between dry and wet seasons (Chou et al., 2013). This ‘rich-get-richer’ behavior is consistent with a large increase in the moisture content of atmosphere, leading to enhanced horizontal moisture fluxes across regions.

When Crocodiles Roamed the Poles

(CNN) Most of us can appreciate that the world is an ancient place and that a lot has changed in the almost 4.6 billion years since it took its shape.

It’s not easy to have a feel for the amount of time that has passed, but grappling with deep time helps you understand why an atmospheric carbon dioxide concentration (CO2) of 400 parts per million (ppm) is meaningful.

Deep time is geologic time and the scale needed to fathom the evolution of life, mountains, oceans, and Earth’s climate.

Northeast Region Climate Change Assessment for the Next 100 years: Impacts, Mitigation, and Adaptation

Srinath’s post-doctoral research is focused on producing stakeholder-specific high-resolution climate projections for the New England region. He received his B.E. degree in Computer Science from University of Madras, India in 2004 and M.S. in Atmospheric Chemistry from North Carolina State University in 2007. During his Ph.D. at Yale University (graduated 2014), he worked on reconstructing changes in the global hydrological cycle during geological global warming events, using a combination of sedimentary biomarker records and paleoclimate models. 

Subpolar gyres at the end of the 21st century

Subpolar ocean gyres (large systems of rotating ocean currents) in the Southern Hemisphere are found poleward of the Antarctic Circumpolar Current near the Weddell and Ross Sea. They play a key role in the global energy and water budgets. These gyres are crucial for the transport of heat around the planet, as well as the distribution of nutrients and marine species. Thus, the subpolar gyres are important in the mixing and transformation of water masses.

400 ppm of CO2: How will sea-level respond?

We are currently on the eve of a world with ~400 parts per million (ppm) of atmospheric carbon dioxide (398.35 ppm as of May 2nd, Mauna Loa Observatory). How global climate, sea-level and ecosystems will respond to this level of CO2 level is a key question for global change research. Recently, Foster and Rohling (2013) looked back into Earth’s geological history to explore the relationship between atmospheric CO2 and global sea-level.

Detecting ozone- and greenhouse gas-driven wind trends with observational data

Earth’s climate is characterized by persistent westerly jets (eastward flow) in the upper troposphere, located in the mid-latitudes of the Northern and Southern Hemisphere, which are associated locally with strong weather systems. The location of these jets is of paramount importance to human societies, as these are collocated with maximum in precipitation rates and surface winds in the extratropical regions.

Hotter now than the last 11,300 years

In their recent Science article, Marcott and colleagues present a reconstruction of Earth’s mean surface temperature over the last 11,300 years – the Holocene. Why is this important? It is the most comprehensive and inclusive reconstruction to date from which to assess how novel our current temperatures are compared with those in the recent geologic past. In other words, are we experiencing average temperatures that are essentially unprecedented over this timeframe?


Subscribe to RSS - Global Warming