Climate Science

studies and investigations pertaining to climate science in the most general sense

Detecting ozone- and greenhouse gas-driven wind trends with observational data

Earth’s climate is characterized by persistent westerly jets (eastward flow) in the upper troposphere, located in the mid-latitudes of the Northern and Southern Hemisphere, which are associated locally with strong weather systems. The location of these jets is of paramount importance to human societies, as these are collocated with maximum in precipitation rates and surface winds in the extratropical regions.

Increase in the range between wet and dry season precipitation

A simple thermodynamic argument suggests that as the water vapor content of the atmosphere increases with global warming dry regions may become drier and wet regions wetter. This enhanced hydrological contrast with global warming can be attributed to changes in the atmospheric water vapor concentration being comparatively larger than those of the moisture advecting winds in the lower atmosphere.

Fungi, not plants, drive long-term carbon sequestration in boreal forest

Soils contain two-thirds of the world’s terrestrial carbon (3,000 Pg C). The total annual soil CO2 efflux yearly exceeds the current rate of anthropogenic CO2 emissions from deforestation and burning of fossil fuels by a factor of 10. Subtle changes in soil organic carbon (SOC) processing (formation and decomposition) are, therefore, highly relevant to the global carbon cycle as soils have the potential to enhance or mitigate current increases in atmospheric CO2.

Climate-Ecosystem Carbon Feedbacks

Respiration by plants and microorganisms is primarily responsible for mediating carbon exchanges between the biosphere and atmosphere. Climate warming has the potential to influence the activity of these organisms, altering the exchanges between carbon pools. Traditionally, the respiratory release of CO2 into the atmosphere is thought to be more temperature-sensitive than photosynthesis (carbon fixation), generating a positive climate-ecosystem carbon feedback with the potential to accelerate climate warming by up to 1.4 times.

Unusual Southern Hemisphere Tree Growth Induced by Ozone Depletion

Earth’s climate system includes several patterns of climate variability at the hemispheric scale. One of the best known of these is the El-Nino/Southern Oscillation, which influences weather across much of the globe. Another important feature of the climate system is the Southern Annular Mode (also known as the Antarctic Ocean Oscillation), which is an index of the pressure gradient between the mid- and high-latitudes in the Southern Hemisphere. Over the last few decades, the dominance of the positive phase of the Southern Annular Mode has been increasing.

YCEI Annual Conference 2013 — Water: The Looming Crises

Public discussions of climate change often focus on greenhouse gases and rising temperatures, but the most severe and immediate societal impacts of global warming are likely to be associated with changing hydrological conditions. Disruptions in water supply, extreme storms and record droughts may impact every aspect of rural and urban society: from agriculture and manufacturing to housing, energy and human health.

Research Initiatives

YCEI develops interdisciplinary Research Initiatives that integrate faculty, postdoctoral fellows, and graduate students to address pressing issues in Climate and Energy.  Each Research Initiative is organized by a team of faculty and promotes solutions through the funding of collaborative research, as well as workshops and symposia that feature national and international experts.  Our Research Initiatives include:


Subscribe to RSS - Climate Science